
AD-AMOO 465 ATMOSPHERIC RESEARCH CORP NORMAN OK F/4 4/2
MULTIVARIATE AUTORESRESSIVE FORECAST MODEL FOR SHORT-TERM PAE--ETC(UJ

APR 81 J S GOERS$ OAAO9-72-D-0IOO
UNCLASSIFIED ERADCO/ASL-CR-8I-OIOO.II NL

mhEEi"hohEEmohEI
smEohEmhEEmhh

I uuuuu.....um



ASL-CR-81 -0100-4 RprsCnolSymbol

OSD-1366

A MULTIVARIATE AUTOREGRESSIVE FORECAST M~ODEL

FOR SHORT-TERM1 PREDICTIONS

0 APRIL 1981

By

James S. Goerss

/Atmospheric Research Corporation z

N~orman, Oklahoma 73069

Under Contract DAAG29-72-01-0100

Contract Monitor: Bruce T. Miers

Approved for public release; distribution unlimited

4 US Army Electronics Research and Development Command

V ATMOSPHERIC SCIENCES LABORATORY
i White Sands Missile Range, NM 88002

81 6 ~1



NOTICES

Disclaimers

The findings in this report are not to he construed as an
official Department of the Army Dosition, unless so desig-
nated by other authorized documents.

The citation of trade names and names of manufacturers in
this report is not to be construed as official Government
indorsement or approval of commercial products or services
referenced herein.

Disposition

Destroy this report when it is no lonqer needed. Do not
return it to the originator.

w



SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
REPORT DOCUMENTATION PAGE READ INSTRUC-IONS

BEFORE COMPLETING FORM

I REPONUMBER 2. GOVT ACCESSION NO.! 3. RECIPIENT'S CATALOG NUMBER

iSL-CR-81-9 100-4
4. TITLE(idSubtitle) ,--S. TYPE OF REPORT& PERIOD COVERED

A MULTIVARIATE AUTOREGRESSIVE FORECAST ?0ODEL Contractor'sFinal Report
FOR SHORT-TERM PREDICTIONS 6 [. PERFORMING ORG. REPORT' NUMBER

.AUTHOR(e.) " 8. CONTRACT OR GRANT NIJ41ERa,

( James S./Goerss /- .AAG29-72-D-,lr1,

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMEN7. PR'jFCT, TASKAREA & WORK UNIT NUMBERS

Atmospheric Research Corporation U.T U E

Norman, Oklahoma 73069 DA Task' ILl1 2111A1'710"

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

US Army Electronics Research and Ar___ ,____l__ "__-_
Development Command 3. FAGES

Adel phi , MD 20783 52
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this r-port)

US ArmytmosphericSciences Laboratory UNCLASSIFIFO -"
White Sands Missile Range, NM 88002 .

15a. DECLASSIFICATION "DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

Contract Monitor: Bruce T. fliers

19. KEY WORDS (Continue on reverse side If necessary nd Identify by block number)

Climatology
Statistics
European weather
Forecast model

20. AW.m''CT(Canfw., , ve mr er I l afh Fne my and Ideilfy by block number)

Data from 3 years (1972-1974) of synoptic observations collected at seven rerman
stations were used to determine multivariate autoregressive ("VAR) model- to
make short-term forecasts (3 to 12 hours) for six atmospheric variables (temper-
ature, u-wind, v-wind, visibility, ceiling height, and height of first cloud
layer). So that certain tactical constraints could be met, tho order and number
of predictor variables used by the MVAR models were limited. To emphasize the
variance of low ceiling and visibility situations, a variable transformation was

JAN 17 EDTON OF I NOV 6S IS OBSOLETE 1

SECURITY CLASSfFICATI'I)h OF T i I% PAGE r t)str Fn&" Pat )



SECURITY CLASSIFICATION OF THIS PAGE('Whan Dota Entoemd)

20. ABSTRACT (cont)

performed upon the observations of visibility and the cloud height variables.
The best forecasts were obtained when six seven-parameter MVAR models were used.
Each model produces a forecast for a particular variable, using the observations
at the seven stations as parameters. The variables that can be forecast best
are temperature and the u- and v-components of the wind with about 95, 75, and
60 percent of the variance, respectively, explained by the model. From 45 to
70 percent of the variance is explained by the model for visibility while from
30 to 60 percent is explained for the cloud height variables. Finally, data
from observations collected in 1976 were used in testing the MVAR models, and
the error statistics from these actual forecasts agreed with theory.

SECURITY CLASSIFICATION OF THIS PAGE(W',.en te FnfIr.0



TABLE OF CONTENTS

Section

1 Introduction................................................

2 Multivariate Autoregressive Forecast Model....................

3 Preliminary Data Analysis.................................... 1

4 Application and Results.....................

5 Conclusions................................................. 2

6 References ................................................... 2

APPENDIX A. COVARIANCE AND COEFFICIENT MATRICES FOR THE SIX
VARIABLE-AT-A-TIME MVAR MODELS............................. -2

APPENDIX B3. PROGRAM LISTINGS AND FLOWCHART CF ANALYSIS
PROCEDURES............................................. ,

.Access 0 ~Fo

A 

C 
C

.3



1. Introduction

The purpose of this research is to develop a multivariate autore-

gressive (MVAR) climatological model to be used for short-term forecasting

(3-12 hours) of various atmospheric variables over a limited area in a

tactical situacion. The atmospheric variables to be forecast are temperature,

visibility, ceiling height, height of the first cloud layer, and the u- and

v-components of the wind. The tactical situation facing the forecaster is

this: all of his communications are cut off and he must, using only a small

computer with limited storage area, make 3-hourly forecasts cf the afore-

mentioned variables out to 12 hours over an area on the order of 100 km

square. Using an MVAR model the forecaster can not only make the necessary

fcrecasts, but confidence intervals about the forecast values can also be

computed to aid in any decision-making processes based on these forecasts.

In the next section a theoretical description of an MVAR forecast

model is presented. In such a model the forecast value of a variable

(piedictand) is assumed to be a function of present and past observations of

that variable as well as other predictor variables. The relationships

between the predictand and the predictors are carried within the coefficient

matrices of the model which are determined from the past history of observations.

Emtedded within these coefficient matrices will be the effects of complex

terrain upon the inter-relationships among the predictand and predictors.

The data used in this study consisted of five years of 3-hourly

observations of the six variables to be predicted as well as one predictor variable,

the dewpoint temperature, for the following north German stations: Hannover,

Bremen, Braunscnweig, Roizenburg, Magdeburg, Weissen, and Wernigerode. In

Section 3 the preliminary data analysis is described in which the distribution

and various statistical properties of the variables were determined. From



the re'.jOt . of this analysis it was decided that the clud hei<:if

ibility variables be transformed in such a way that the varior':ce ;."'

during low visibility and ceiling conditions be emphasized so t'i&i

conditions could be better forecast.

Finally, in Section 4 various MVAR forecast models orr

determined using the first three years of data (1972-!974". W-"

to the limited data storage available to the forecaster it wa,

the final models could only utilize values of the predictor-.- u

period preceding the forecast time. it was found that under ti, I-.

constraints the best forecasts could be obtained using six 7-Darametpr

VAR models. Each model produces a forecast for a particular varia§,'-

the observations at the seven stations as parameters. The variaL'e•

one can theoretically expect to forecast best are temperature a,,c t,'

and v-components of the wind with about 05, 75 and 60 pe-cerit W t()4

variance, respectively, explained by the model. The percent variarnco c..

expect to explain ranges from about 45 to 70 for visibility and from .'

30 to 60 for the cloud height variables. Using the data from 1976 t MW

models were tested and the error statistics from these actual forecasts wf,

found to agree quite well with theory.
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2. Multivariate Autoregressive Forecast Model

In this section the theory behind a multivariate autoregressive

(MVAR) forecast model will be outlined. Suppose that one has collected m

time series consisting of n observations each for m different variables.

Further assume that the value of the sample mean has been subtracted from

each of these observations. Using these observations one would like to

develop a forecast model such that future values for m, < m of these

variables may be predicted, given the present and a certain number of past

values of these variables. For a particular time i the observations for the

m variables are denoted by the m-dimensional column vector, Xi, where the

first mI elements of Xi belong to the mI time series to be predicted while

the last m - mI belong to those series to be used to aid in the forecast.

The p-th order MVAR model is:

Xi + AIXi-I + ... + ApXi- p  Zi (1)

where the A's aremxmcoefficient matrices and Zi is an m-dimensional white

noise column vector. Such a model would use the present observations (XiI)

and p-1 past observations in order to predict the values of the variables

one interval in the future (Xi). The variance of the white noise process

(Zi) represents the one-step prediction error variance of forecasts made

with this model. Two things must be determined,using the collection of n

observation vectors, before an MVAR forecast model can be developed. First,

the proper order model must be selected and then the coefficient matrices

for that order model must be computed.

The procedure outlined in this section is the multivariate general-

ization given by Whittle (1963) of the recursive method developed by Durbin

(1960) for the fitting of univariate autoregressive models of successively

7



increasing order. Except for the inclusion of the Akaike FPE criterion

(Akaike, 1971), it is identical to that presented by Jones (1964). The

Akaike FPE parameter is an estimator of the one-step prediction error of

the MVAR process. The use of the FPE criterion permits one to find the

order model with the smallest one-step prediction error. The analysis

procedure can be described simply: first, L + 1 MVAR models whose ardE'"-

successively increase from zero to L are fitted to the n m-dimnensiorl'

observation vectors using the recursive method to be detailed below-,

for each order model a value of the Akaike FPE parameter is computed, an.

finally, anMVAR model whose order is that for which the minimum FPE ws

found is fitted to the data using the same recursive method. This s t.7e

model that one would use for prediction.

The first step in the analysis method is the calculation of the

lag sums

n
G Xi  " p=O,1,2, ,L,
G p i = p ~ l i - ..p= , 1 ..., L

G_p = G'
p

where G' denotes the transpose of the m x m matrix Gp. In the following
p p*

equations the p-th order residual matrices for the forward and backward

autoregressions are denoted by Sp and Sp, respectively. The k-th coeffi-

cient matrices for the p-th order forward and backward autoregressions are

denoted by Ap and Tk' respectively. The determinant of the mI x mi sub-k k'

matrix in the upper left-hand corner of Sp is denoted by Ip,m1i.

ip
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FPEL :(j )ml ISL,ml.

Thus, if one had found that FPEk had been a minimum and had fitted at k-th

order MVAR model to the data, the prediction for Xi given Xij, Xik

would be

k k k
Xi  =-A, Xi. - 2 X . A X -k(2)k 1.k



At this point the values of the sample means for the variables to be predicted

would be added back to the Xi vector to give the final prediction value -

each variable.

Finally, one can determine the quality of the predictions from sich

a model by computing the prediction error covariance matrices. For a k-tn

order model the one-step prediction error covariance matrix is

I I S
Vk = n-mk k

Successive Predictions can be made using (2) by merely re~lacinc - ser..

values by predictions as one steps further into the future. The fo'V'rl -

recursion is used to find the j-steD prediction error covariance mat_4,

Vi, when using repeated predictions:

BI  Al

Bj = -(A + BA + ... All

and

Vj = Vj- 1 + Bj_ I V
1 Bj I

Once this matrix has been obtained, its main diagonal consists of the error

variances for the variables to be predicted. These can then be used to

determine confidence intervals to be placed about the forecast values.
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3. Preliminary Data Analysis

Before an attempt was made to determine any MVAR mode's, pre-

liminary data analysis was performed using the 3-hourly observations

(OOZ, 03Z, etc.) collected during 1972-1975 for the following statiors-

Hannover, Bremen, Braunschweig, Boizenburg, Magdeburg, Weissen, and

Wernigerode. First, the distributions of the six variable- _. Le gredicted

(temperature, u- and v-components of the wind, visibil'ity, ceilinc height,

and height of the first cloud layer) were determined. In Figure I t,1e

distribution of the 1972-1975 temperature and u-wind observations fo-

Wernigerode are displayed with their sample means denoted by a star. The

distributions shown here are typical of the temperature and u- and v-winc

observations for all seven stations used in this study. As can be seen in

Figure 1, these variables appear to be quite normally distributed.

On the other hand the distributions found for visibility and the

cloud height variables were far from normal. in 7icure 2a the distribution

found for the visibilities observed at Wernigerode is shown. This distri-

bution, which is typical of those found for the visibility and cloud heio!t

variables at all seven stations, is roughly rectangular with a sarrpe mean

of just over 9 km. However, since an MVAR model is designed to predict

deviations of the variables about their sample means and since for these

three variables the sample means are much larger than the low visibility

and low ceiling situations that one would like to be able to predict, the

following transformations were performed upon these variables in order to

emphasize the variance of the low visibility (ceiling) situations:

V2 = exp(-V1/2000) (3)
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C2 : exp(-Cl/1000), (4)

where VI and C1 are the observed visibility and cloud height, respectively.

in meters. In Figure 2b we can see the effect of this transformation upon

the visibility distribution for Wernigerode. The sample mean of the tra7s-

formed variable now represents a visibility of only 2.4 km. Furthermore,

an observation of visibility less than I km will contribute more to the

variance than an observation of unlimited visibility since its deviatio,

from the sample mean will be larger. By expanding the scale for low v - :-

bilities and decreasing the scale for high visibilities, this transformat,-

permits more precise forecasts of the poor visibility situations.

Next, monthly and hourly means were computed for all variables at

all stations using the 1972-1975 observations. Table I summarizes the

Table 1. Variance explained by monthly and hourly means for Hannover
(1972-1975).

Total Variance Explained by:
Variable Variance Monthly Means Percent Hourly Means Percent

First Cloud Layer Ht.* .0791 .0052 6.6 .0036 4.6

Ceiling Ht.* .0843 .0070 8.3 .0028 3.3

Temperature 53.49 32.13 60.1 4.70 8.8

Visibility* .0331 .0021 6.3 .0013 3.9

u-wind 13.63 .79 5.8 .062 0.5

v-wind 6.08 .52 16.4 .32 0.5

* Indicates transformed variable.

results of these computations for Hannover, which again are typical of

those found for the other stations. We can see that with the exception

of monthly averages for temperature, only a small percent of the total

variance for the sixVariables is explained by the annual and diurnal cycles.

14
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Typically, about 60 percent of the temperature variance is..explained by

the annual cycle. Plots of the hourly and monthly means for Hannover are

displayed in Figure 3. We can see that the amplitude of the annual wave is

about 80C while that of the diurnal wave is about 30C. Since all seven

stations display this pronounced annual wave for temperature and it explains

a significant amount of the variance, its effect will be removed from the

temperature data along with that of the diurnal cycle and the sample mean

before any MVAR models are determined for that variable. One must be car-

ful when attempting to fit an MVAR model to data which are highly correlated

since unstable processes can be produced. In any case, it is the deviations

about these very regular cycles that we are interested in forecasting, and,

thus it is these deviations which we will attempt to model.

16
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4. Application and Results

Using observations collected during 1972-1974 the MVAR modeling

process described in Section 2 was applied in several different ways in

order to determine the best forecasting technique. Given the tactical

constraint of limited computer size and storage, we will only consider

MVAR forecast models of order nine or less. Thus, only a one day history

of observations of the predictor variables need be stored at a time. Tis

tactical consideration also limits the number of variables to be used by

the MVAR models (not only those to be predicted but also those to aid in

the prediction). For example, if an MVAR model were developed which used

all of the observed variables for all stations, then it would possess 49

variables. If the model were of order nine, then nine 49 x -9 coeff'icient

matrices would have to be stored and used in the forecast computations along

with nine 49 x I observational vectors from the past 24 hours. This would

require almost lOOK bytes of storage and a comparably large number of

computations required to make the forecasts. On the other hand, a model oi

order nine with only seven variables would require about 50 times less space

and computation time.

The first type of MVAR model to be tested used the six variables

to be predicted (temperature, u- and v-wind components, visibility, ceiling

height, and height of the first cloud layer) along with the dew-point tem-

perature for one station at a tine. The analysis procedure outlined in

Section 2 was applied using the 1972-1974 observations to calculate the

lag sum matrices. The model order was restricted to be no greater than

nine and this maximum was chosen in every case except for Braunschweig where

an eighth order model possessed the smallest Akaike FPE parameter. The



7 x 7 coefficient matrices for each resulting station model were determined

along with estimates of the one-step prediction error variance for the six

variables to be forecast. We will use these estimate6 in order to determine

the quality of the various MVAR forecast models tested here. Table 2 summar-

izes the results for the 7 station models. We can see that using such a

Table 2. Estimates of one-step prediction error variance and percent
variance explained (in parenthesis) for the station MVAR models
determined from 1972-1974 observations.

Height of
Model 1st Cloud Ceiling

Station Order Layer* Height* Temperature Visibility* u-wind v-wind

Hannover 9 .0374 .0436 2.55 .0164 2.96 2.40
(54.7) (48.6) (94.8) (52.2) (78.8) (63.0) I.

Bremen 9 .0367 .0436 2.93 .0194 3.31 2.99
(52.8) (45.5) (93.8) (42.4) (78.4) (67.3)

Boizenburg 9 .0181 .0308 3.75 .0252 4.78 3.47
(32.2) (35.0) (92.4) (46.8) (63.9) (48.4)

Braunschweig 8 .0296 .0333 3.12 .0112 2.82 2.46
(53.2) (49.8) (92.7) (55.0) (75.9) (59.1)

Magdeburg 9 .0260 .0314 3.58 .1400 3.01 3.17
(36.3) (38.8) (93.3) (66.7) (72.1) (52.0)

Wernigerode 9 .0223 .0264 3.9 .0332 3.97 4.16
(38.4) (42.5) (92.1) (64.6) (67.5) (46.0)

Weissen 9 .0360 .0391 4.15 .0186 5.01 3.06
(33.1) (38.8) (92.4) (50.4) (67.5) (52.9)

*Indicates' transformed variable.

model we can best forecast temperatures (from 92.1 to 94.8 percent variance

explained) and are least able to forecast the height of the first cloud

layer (from 32.2 to 54.7 percent variance explained). One can roughly

expect to explain 40%, 55%, 55%, and 70% of the variance for ceiling height,

visibility, v-wind, and u-wind, respectively.
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The next type of MVAR model to be investigated utilized the obser-

vations for a particular variable at all seven stations. Again the model

order was restricted to nine or less and the MVAR analysis procedure was

applied to the 1972-1974 observations for the six different variables to

be forecast. In Table 3 the estimates of the one-step prediction error

variance and the percent variance explained for the 6 variable models are

displayed. In this case, as discussed in Section 3, the monthly and hourly

Table 3. Estimates of one-step prediction error variance and percent vaianc.
explained (in parenthesis) for the variable MVAR models determined
from 1972-1974 observations.

Model
Variable Order Hannover Bremen Boizenburg Braunschweig MagdeburWernTIerode Wei' en

Height
of 1st
Cloud .0359 .0369 .0183 .0261 .0244 .0224 .0339
Layer* 9 (56.5) (52.5) (31.5) (58.7) (40.2) (38.1) (37.0)

Ceiling .0419 .0440 .0298 .0293 .0282 .0263 .0367
Height* 9 (50.6) (45.0) (37.1) (55.9) (45.0) (42.7) (42.6)

Tempera- 2.24 2.34 2.63 2.02 2.35 2.82 3.19
ture 9 (95.4) (95.0) (94.7) (95.3) (95.6) (94.3) (94.1)

Visi- .0157 .0187 .0241 .0097 .0132 .0335 .0178
bility* 9 (54.2) (44.5) (49.2) (61.0) (68.6) (64.3) (52.5)

2.51 3.18 3.85 2.28 2.33 3.66 3.88
u-wind 9 (82.0) (79.2) (70.8) (80.5) (78.4) (70.0) (74.?)

2.00 3.08 2.99 2.03 2.51 3.72 2.48
v-wind 9 (69.1) (66.3) (55.6) (66.3) (62.0) (51.7) (61.8)

* Indicates transformed variable.

means were removed along with the sample means for the temperature observations.

A comparison of Tables 2 and 3 indicates that in almost every case the percent

variance explained by the variable-at-a-time MVAR models is greater than that

for the station-at-a-time models. The greatest improvement is noted for the

20



v-wind predictions where the percent variance explained is increased by as

much as 10%. For the variable-at-a-time models we can expect to explain

approximately 95%, 75%, 60%, 55%, 45%, and 45% of the variance, respectively,

for temperature, u-wind, v-wind, visibility, ceiling height, and height of

the first cloud layer.

For the first two types of MVAR models tested here the model order

was limited. However, for both types, MVAR models were determined in which

the maximum order permitted was 30. In these cases MVAR models whose order

ranged from 25 to 30 were found to possess the minimum value of the Akaike

FPE parameter. In every case though the reduction of the one-step prediction

error variance over that of the ninth order models was negligible. Thus,

the limitation of the model size req.uired by the tactical situation has no

detrimental effect upon the quality of the forecast models produced.

A final MVAR model was examined in which the number of variables

was 21, consisting of the aforementioned seven variables for the stations,

Hannover, Bremen, and Braunschweig. Again the model order was limited to

nine or less and a ninth order model was chosen by the analysis procedure.

Table 4 summarizes the results for this particular model.

Table 4. Estimates of one-step prediction error variance and percent
variance explained (in parenthesis) for the three-station
MVAR model determined from 1972-1974 observations.

Height of

1st Cloud Ceiling
Station Layer* Height* Temperature Visibility* u-wind v-wind

Hannover .0341 .0391 2.10 .0152 2.46 1.97
(58.7) (53.9) (94.7) (55.7) (82.3) (69.6)

Bremen .0348 .0416 2.31 .0182 2.97 2.87
(55.2) (47.9) (95.1) (46.0) (80.6) (68.6)

Braunschweig .0248 .0282 2.19 .0098 2.24 1.98
(60.8) (57.5) (94.9) (60.6) (80.8) (67.1)

* Indicates transformed variable.

21



Comparing Table 4 with Table 3 one can see that this 21-variable model is

only slightly better than the three respective 7-variable models. Therefore,

since the variable-at-a-time models can be run using about one-tenth the

computer space and time and since there is negligible improvement to be

gained from the larger model, they have been chosen as the best MVAR fore-

cast model to be used for short-range predictions in a tactical situat:on.

We have seen in this section how well, based on the MVAR theory

described in Section 2, we can expect to forecast the six meteorolocK<

variables of interest in this study. Using the six variable-at-a-time

models, whose expected performances are outlined in Table 3, and observ?-

tions collected during 1976, a number of MVAR forecasts were made and cor-

pared with the observations valid at the forecast time. Assurino that the

MVAR forecast models are unbiased, theoretical estimates of the root mean

square errors (RMSE's) for the one-step through four-step predictions are

obtained by simply taking the square root of the one-step through four-step

prediction error variances. These theoretical RIMSE's are then compared with

the actual RMSE's computed from 3-, 6-, 9-, and 12-hour forecasts made using

the six MVAR models (developed using 1972-1974 data) upon 1976 observations.

Tables 5 and 6 display the results of 48 MVAR forecasts using the

ninth order variable-at-a-time models for the transformed variables height

of the first cloud layer and ceiling height, respectively. We can see in

Table 5 that in virtually every case the RMSE's computed from the actual

MVAR forecasts were smaller than those expected from theory and in no case

were they larger. The RMSE's determined from the ceiling height forecasts

shown in Table 6 agree quite closely with their theoretical counterparts

for four stations (Hannover, Bremen, Braunschweig, and Weissen) and are

22



Table 5. Comparison of theoretical forecast RMSE's (T) with those computed
from actual MVAR forecasts (C) using 1975 transformed height of
first cloud layer data.

RMSE's
No. of 3-hour FCST 6-hour FCST 9-hour FCST 12-hour FCST

Station Forecasts C T C T C T C T

Hannover 48 0.12 0.19 0.18 0.23 0.19 0.25 0.20 0.26

Bremen 48 0.11 0.19 0.16 0.23 0.17 0.25 0.20 0.26

Boizenburg 48 0.10 0.14 0.17 0.15 0.12 0.15 n.12 0.15

Braunschweig 48 0.13 0.16 0.14 0.19 0.20 0.21 0.17 0.22

Madgeburg 48 0.09 0.16 0.15 0.17 0.11 0.18 0.14 C,19

Wernigerode 48 0.08 0.15 0.10 0.16 0.10 0.17 0.09 0.i3

Weissen 48 0.17 0.18 0.20 0.20 0.21 0.21 r(.22 0.22

Table 6. Comparison of theoretical forecast RMSE's (T) with those computed
from actual MVAR forecasts (C) using 1976 transformed ceiling
height data.

RMSE's

No. of 3-hour FCST 6-hour FCST 9-hour FCST 12-hour cCST
Station Forecasts C T C T C T C T

Hannover 48 0.20 0.20 0.24 0.24 0.28 0.25 0.25 0.27

Bremen 48 0.22 0.21 0.26 0.24 0.27 0.25 0.28 0.27

Boizenburg 48 0.11 0.17 0.12 0.19 0.13 0.20 0.13 0.21

Braunschweig 48 0.19 0.17 0.18 0.20 0.26 0.22 0.20 0.23

Magdeburg 48 0.10 0.17 0.16 0.19 0.12 0.20 0.15 0.21

Wernigerode 48 0.08 0.16 0.10 0.18 0.10 0.19 0.10 0.20

Weissen 48 I 1. 0.19 0.20 0.21 0.21 0.22 0.23 0.23

consistently smaller for the other three stations. The results for 46 MVAR

forecasts for the third transformed variable, visibility, are shown ir
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Table 7. With the exception of those found for Boizenburg, the RMSE s

computed from the forecasts agree cuite well with those expected from t?c -v.

Table 7. Comparisor of theoretical forecast RMSE's (T) with those comnutc-
from actual MVAR forecasts (C) using 1976 transformed visibility
data.

RMSE's
No. of 3-hour FCST 6-hour FCST 9-hour FCST 12-hour K

Station Fcrecasts C T C T C _

Hannover 46 0.09 0.,-3 0.09 0.15 0. 18 0. 07

Bremen 46 0.09 0.14 0.14 0.16 0.15 OD .6 0.12

Boizen_.rg 46 0.34 076 0.29 0.18 0.28 0.!9 0.3 071:

Braunschweig 46 0.10 0.12 0.09 0.12 0.21 0.i3 0.:? S.

Maqdeburg 46 0.14 0.11 0.12 0.14 0.!4 C.16 0.2?

Wernicerode 46 0.25 0.78 0.19 0.20 0.19 0.2C 0.2 .

Weis;sen 46 0.12 0.13 0.16 0.15 0.19 0.16 2.22 ".17

It was found that during the forecast periods, a much larger number of zero

visibilities (resulting in a transformed variable value of one) were actually

observed at Roizenburg than at any other station. In Figure 2b we can see

that sucn observations would result in an increase in variance and thus in

"".a4SE's for the transformed visibilities.

The RMSE comparison for 58 temperature forecasts is displayed in

Ta'h, P while those for 140 wind forecasts are shown in Tables 9 and 10.

We car see in Tables 8 and 9 that the computed RMSE's are slightly larger

than their theoretical counterparts for the temperature and u-wind MVAR

forecasts. In no case, however, are these differences significant. The

v-wind MVAR forecasts, whose RMSE's are shown in Table 10, are consistently
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Table 8. Comparison of theoretical forecast RMSE's () with those computed
from actual MVAR forecasts (C) usinc 1976 temperature data.

3-hour FCST 6-hour FCST 9-hour FCST 12-hur FCST
Station Forecasts C T C T C T C

Hannover 58 1.65 1.50 2.25 2.02 2.9L 2.,9 2.79 2.71

Bremen 58 1.71 1.53 2.07 2.02 2.4L 2.31 :.72 2.£7

Boizenburg 58 1.61 1.62 1.98 2.08 2.3' 2.36 2.25 2.57

Braunschweig 58 1.54 1.42 2.11 1.93 2.50 2.24 2.55 2.5?

Magdeburg 58 1.74 1.53 2.29 2.-C 2 2.. 2a3 2.7

Wernigerode 58 2.18 1.68 2.53 2.18 2.82 2.L9 2.8 2.72

Weissen 58 1.93 1.79 2.59 2.28 2.57 2.56 2.26 2.7:

better than those expected from theory. in summary, we have seen in Tables

5 - 10 that for the most part, when tested upon 1976 observations, the fore-

casts produced by the six ninth order variable-at-a-time MVAR models (developed

using 1972-1974 data) agree quite well with what one would expect theoreticall\.

Table 9. Comparison of theoretical forecast RMSE's (T) with those computed
from actual MVAR forecasts (C) using 1976 u-wind cata.

-1
RMSE's (msec

3-hour FCST 6-hour FCST 9-hour FCST 12-hour FCST
Station Forecasts C - - T C T C T

Hannover 140 2.02 1.58 2.32 2.09 2.97 2.42 2.99 2.71

Bremen 140 2.56 1.78 2.87 2.28 3.26 2.60 3.42 2.87

Boizenburg 140 1.95 1.96 2.31 2.23 2.71 2.49 2.69 2.66

Braunschweig 140 1.74 1.51 2.31 1.95 2.74 2.26 3.01 2.50

Magdeburg 140 1.52 1.53 2.34 1.88 2.65 2.16 2.87 2.36

Wernigerode 140 2.17 1.91 2.71 2.27 2.81 2.53 2.95 2.72

Weissen 140 1.99 1.97 2.65 2.29 2.97 2.57 317 2.77
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Table ]0. r.rioarison o theoretical forecast r2MSE's (T) with those cornuutrc
from actual MVAR forecasts (C) using 1976 v-wind data.

RMSE's (msec -1'
3-hour 7CS- 6-hour FCST 9-hour '2-hrv-_77

Station Forecasts C T C T C T _

Hannover i4C 1.32 1.41 1.41 1.74 1.78 1.97 1.80 2.13

Premen ]lAO 1.83 1.75 2.13 2.17 2A8 2.41 9.;2 2.62

1b r !40 1.29 1. 7- 1.45 1.96 1.5 2.12 .62 2.26,
BrZufui<,-O 1. "'2 '142 1.43 1.70 .77 1.90 1.72 2.7

., 1.26 1.33 1.33 1.33 1. 2. .1 .72

Wernigerode 140 1.90 1.03 1.94 2.12 2.25 2.34 2.25 2.

Weissen 140 i.45 1.57 1.56 1.82 1.3. 2.0'

Finall), n the next table we will demonstrate how ccn"o erce c Inerv

car, De f,;r,, ed about N1VAR predictic,s using t,:o visiiiity loreca,;,: a *. .

the va:"ca, a-at-3.-me model. Frc:- the error analysis of the actual Ioreca'-

whose r)e..:C a utlined in Tables 5 - 10, we conclude that in practice thc

MV; R mcci& . -. ediction mucn "ike we would expect from theory. Ion ide-c

intervals C.'.) to be placed about the MVAR predictions can be computed by

r ul:ny;,-c co-stant (varying in size depending on the percent C.I. desired)

t :.ue - root of the estimated forecast-step prediction error variance.

S~nce t equivalent to multiplying that constant by the theoretical

0YIs> s snown in Ta'les 5 - 10, we can see that, as one would exnect, larger

ea aigq, C.I.'s will be determined as the forecast-step is increased.

The results of two visibility forecasts made using the variable-

at-a--time MVAR model are shown in Table 11. The forecasts and confidence

intervals have been transformed back into normal units (km). The 12-hour
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Table 11. A comparison of MVAR visibility forecasts (F) and 80'. confidence
intervals (in parenthesis) with the actual observed visioilities
(A).

Forecast Time - 18Z, Ma' 29, 1976
3-hour 6-hour 9- hour 12-hour

Station F A F A F A F A

20+ 20+ 7.8 20 7.1 8 5.3 7
Hannover (3.9,20+) (3.1,20+) (3.0,20+ .

20+ 20 20+ 20 1i 20 5.7 8
Bremen (3.7,20+) (3.2,20+) (3.1,20+) \2.6,20+)

7.5 18 8.2 15 6.7 :2 4.5 6
Boizenburg (3.0,20+) (2.8,20-) '2.6,20 !,L1,20 '

20+ 20 20+ 15 9 15 2.3
Braunschweig (4.3,204-) (3.8,20-) (3.5,20+) (3.3,20)

20+ 16 20+ 16 6.9 12 6.5 12
Magdeburg (4.1,20+) (3.5,2C0) (2.9,20+)

4 20 0.5 0 0.6 0 4.9 12
Wernigerode (2.0,20+) (0., 1.3) (0., 1.5) (9.1,20

20+ 20 7.3 20 5.5 15 5.7 6
Weissen (3.6,20+) (3.0,20+) (2.6,20+) (2.6.20-)

Forecast Time - 06Z, April 16, 1976
3-hour 6-hour 9-hour 12-hour

Station F A F A F A F A

1.1 0.4 2.1 6 3 10 3.2 8
Hannover (0.6,1.7) (1.3,3.8) (1.7,7.7) (1.8,20+)

1.3 1.5 2.2 6 2.5 8 3.1 9
Bremen (0.7,2.1) (1.3,4.2) (1.a,5.2) (1.7,20+)

0.7 0 1.4 7 1.8 0 2.3 20
Boizenburg (0.2,1.4) (0.6,2.6) (0.9,3.7) (1.1,5.5)

0.9 0.1 1.9 6 2.3 7 3.0 6
Braunschweig (0.5,1.3) (1.2,2.9) (1.5,3.8) (1.8,6.2)

0.7 3.5 1.5 6 1.8 8 2.1 6
Magdeburg (0.3,1.2) (0.8,2.4) (1.0,3.2) (1.2,4.1)

1.8 4.5 1.8 4 3.1 6 3.2 6
Wernigerode (0.9,3.4) (0.8,3.8) (1.5,20+) (1.5,20+)

1.0 4 1.8 6 2.2 10 2.6 8
Weissen (0.5,1.7) (1.0,3.2) (1.3,4.3) (1.4,6.1)
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period after 18Z on March 29, 1976, was basically a time of 1-i1 v i ik

3 case every 80 .. about the MVAR forecasts included the actual

visibility. It is esoecially notable that the model predicted very wP

the very low visibilities actually observed at Wernigerode 6 and 9 hours

dtLer" .re initid! time. The 12-hour period following 06Z on Acri, 16,

, , w u .;n w.ic visibilities were very 1 ow after 2 ,'j "'

sLeddiy i,;.pr- veu ever the rest kf the period. The very low vist .

at thpe 3-e r: m=k were we' 1 fcoecast and for every stati on tree vi

were predicted to improve out te 12 hours. In this case the oT-dei -:- c.

improve the visibilities as fast as nature and only a few o ' the ..

include the actual observations. Prom this table we can see that t-.

confidence intervals can probably be best used by an actua' orecast'

c.wecif;v a minimum expected visibi ity in high visibility sit-at4ns aq

, :. etei visibility in low visibility situations. This tye o

inter retafio"- of the C.1.'s is a'so appropriate for the othe, ' two tral-

4ored ,.r 'I,'es Iceiling height -nd height of first cloud layer). -he

customary interpretation of the C.I.'s as a range in which we expect the

'ariable To lie can be applied to the other three variables (temperature,
0

u-wind, ar v-wird). This range was found to be the order of +2 C and

+2 m/s- ;r a :-hour forecast of temperature and the wind components,

..ezpect-'y. For 12-hour forecasts it was found that the temperature and

r, rqe s were about + 30C and + 3.5 m/sec, respectively.
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5. Conclusions

In this study multivariate autoregressive climatological models

were developed to be used for short-term forecasting of six atmospheric

variables (temperature, visibility, u-wind, v-wind, ceiling height, and

height of the first cloud layer) over a limited area in a tactical situation.

After a prelim-inary data analysis it was found that the cloud-height variables

and visibility could best be forecast if they were first transerred so that

the variance of low ceiling and visibility situations be emphasized over

that of high ceiling and visibility conditions. Various forecast models

were investigated, and it was found that, oiven the tactical constraints,

the best models were ninth order variable-at-a-time MVAR models in which

an observation vector consisted of the values of the variable to be predicted

at the seven German stations used in this study (Hannover, Bremen, Braun-

schweig, Boizenburg, ,'agdeburg, Wernigerode, and Weissen). The 5redictien

error variance matrix and the coefficient matrices for each of the six

variable-at-a-time MVAR forecast models are tabulated in Appendix A.

Using these models one can expect to make 3-hour forecasts which explain

approximately 95%, 75%, 60%, 55', 45% and 45% of the variance, respectively,

for temperature, u-wind, v-wind, visibility, ceiling height, and height

of the first cloud layer.

The MVAR models were developed using data Crllected during 1972-

1974. The models were then tested independently using 1976 observations

and it was found that the actual forecast errors agree quite well with

what would be theoretically predicted. Using the estimated prediction

error variances, confidence intervais were determined to he placed ahout *

MVAR forecasts. It was found that 80% C.I.'s of + 20C and + 2 m/ec could'

20



be placed about the 3-hour forecasts of temperature and the wind components.

respectively. Due to the variable transformation made upon the visibility

and cloud height variables, it was found that the confidence intervais coulc

be best used to determine minimum expected visibilities (or cloud heights'!

in high visibility (or ceiling) situations and to determine maximums in the

Dour visibility (low ceiling) situations.
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APPEN:DIX A

COVARIANCE AND COEFFICIENT MATRICES FOR THE SX
VARIABLE-fF_-A-TIME VVAR MODELS

VA2IABLE-AT-A-TIME MVAR MODEL FOR 1'r"E8ATURE MODEL ORDEP IS

ONE-STEP PREDICTION ERROR COVARIANCE MATRIX

2.2390 1.3424 1.1723 1.3838 1.0775 1.4253 1.2331
1.3424 2.3353 1.1170 1.0036 0.7832 0.9985 0.9633
1.1723 1.1171 2.6270 1.0690 1.0708 1.1669 1.6049
1.3838 1.0037 1.0691 2.0247 1.1673 1.4253 1.2156
1.)"15 0.7833 1.0708 1.1673 2.3475 1.3711 1.4996

0..4953 O, 9 8 6  1.1669 1.4253 1.3710 2.8232 1.U082
i oQ633 1.6049 1.2156 1.4995 1.40P2 3.1902

2OEFICIENT ' Al

-0.515 -0.2799 -0.0838 -0.0O77 0.C406 -C.2020 -0.0514
-0.2149 -c. 599h -C.0952 -0.0068 0.0339 -C. 1C55 -0. '35
-?. 1779 -0.2456 -0.4113 0.0529 -0.0214 -C.072' -'.1 27
-0.1878 -0.1457 -0.0813 -0. 4863 0.0243 -0.1508 .12 4
-D. 154 -0.0695 -. 1085 -0.1129 -0.3041 -0.2153 -". 1029
-0. Z74 -0.0825 -0.0531 -0. 0294 -0.0057 -0.6194 C.C318
-0.1047 -0.0978 -0.2359 0.0111 -0.0222 -C.0851 -3.5,7Q

COLFFir'TENT7 MATFIX A2

O, ,8 , C880 .0 413 0.0165 0.0396 0.020 0.0324
.l47 0.n176 -0.0182 0.0366 0.0346 -0.0149 0.0387

0.1740 0. 1104 -0.0832 -0.3680 0.0329 -0.0260 0.951i
0.Iq0'5 -0_,38 -0.0C96 -0.1213 0.0488 0.0105 O.0484
0.1533 ). ,,176 0.0342 -0. 02 46 -0.0134 -0. 0081 0. c037
0.1'92 .0691 -0.0617 -0.0326 0.0395 -0.0502 0.0193
0 .14 31 0.088, 0.0181 -0. 0344 0.0087 -0.0518 0.1 152

-'PrrCIENT VATRi A3

0.(:,40 -n.0c,41 -0.0218 -0.0147 0.0039 -C.0099 0.0176
0.u13 -.. 3 6 0.0252 0.0115 -0.0219 -0.0067 0.0394

-,..". -,0576 0.0139 O.Q426 0.0235 0.0272 0.0578
. -0.0090 -0.0332 -0.0401 0.0372 0.0183 1.0317

-0.03 -0.0554 -0.0134 0.0949 -0.0065 -0.0220 0.0708
-.' 15 -C.0717 -0.0132 0.0528 0.0667 0.0026 0.0647

-J.., !s9 -C.0':31 0.0075 0.0569 0.0228 0.0070 0.0990

:0EFFTCIENT MATRIX A4

0, 08C -0.0069 0.0366 0.0219 0.0034 -0.0200 0.0022
).0032 -0.0244 0.0068 0.0304 0.0061 -0.0136 0.0022
.C449 0.0299 -0.0871 -0.0711 0.0137 -0.0658 0.0354
. 38 0.0059 0.0311 -0.0163 -0.0134 -0.0496 -0.0041
'-."45 0.0062 0.0113 0.0112 -0.0597 -0.0106 -0.0390

-. 0i433 0.0283 -0.0757 0.0028 -0.0324 -0.0400 -0.0139
0.0352 0.0291 -0.0209 -0.0149 -0.0436 -0.0429 -0.0302

32



COEFFICIENT MATRIX A5

-0.0925 -0.0017 0.0201 -0.0072 0.0275 -0.0197 0.0020
-0.0421 -0.0392 0.0252 -0.0013 -0.0000 -0.0097 0.C11C
-0.1145 -0.0149 0.0764 0.0907 -0.0280 0.0682 -0.0268
-0.0299 -0.0002 -0.0127 -0.0614 0.0327 0.0256 0.C278
-0.0721 0.0082 0.0294 -0.0172 -0.0189 0.0523 0.0520
-0.1080 0.04.18 0.1245 0.0127 -0.0167 0.0740 0.C258
-0.0977 -0.0309 0.0313 -0.0093 0.0175 0.0322 0.020q

COEFFICIENT MATRIX A6

-0.0133 -0.0410 0.0411 0.0027 -0.Ci148 -0.0054 -0.0022
0.0071 -0.0698 0.0277 -0.0232 -0.0138 0.0115 C.0248
0.0584 -0.0465 -0.0673 -0.0469 0.0130 -0.0806 0.0426
0.0205 -0.C224 0.0252 -0.C520 -0.0011 -0.0151 -0.'178
0.0234 -0.0542 -0.0115 0.0347 -0.0362 -0.0232 -0.0152
0.0844 -0.0893 -0.0623 -0.0166 -0.0241 -0.1493 0.0339
0.0143 -0.0217 0.0414 0.0484 -0.0351 -0.0279 -O.C326

COEFFICIENT MATRIX A7

-0.0029 -0.0365 -0.0428 0.0541 -0.0222 0,0434 -%.C1O1
0.0598 -0.0557 -0.0800 0.0474 -0.0425 0.0608 -0. 0 137
-0.0289 -0.0335 -0.0113 0.0385 -0.0367 0. 1244 -0.0453
0.0060 -0.0338 -0.0010 0.0289 -0.0220 0.0456 0.0024

-0.0139 -0.0409 0,0244 0.0503 -0.0450 0.0760 -0,0132
-0.0326 -0.0078 -0.0146 0.0565 -0.0087 0.0698 -0.0249
-0.0394 -0.0672 -0.0108 0.0475 -0.0163 0. 1248 -0.C724

COEFFICIENT MATRIX A8 !

-0.0956 -0.0360 -0.0136 -0.0697 -0.0575 -0.0245 -0.0712
-0.0491 -0.0596 -0.0064 -0.0547 -0.0622 -0.0653 -0.0334
-0.0284 -0.0664 -0.0779 0.0103 -0.0400 -0.0977 -0.0461
-0.0252 -0.0158 -0.0302 -0.1280 -0.0823 -0.0457 -0.0497
-0.0514 -0.0164 -0.0389 -0.0590 -0.1G82 -0.0982 -0.0820
-0.0771 0.0069 0.0145 -0.0757 -0.1425 -0.0459 -0.C456
-0.1077 -0.0097 -0.0354 -0.0592 -0.0799 -0.0779 -C.1176

COEFFICIENT MATRIX A9

0.0553 0.0798 0.0320 0.0306 0.0364 0.0533 0.0426
0.0869 0.0310 0.0551 0.0102 0.0079 0.0996 0.0118
0.0992 0.0506 0.0521 -0.0242 0.0146 0.0755 0.0520
0.0749 0.0557 0.0560 -0.0012 0.0537 0.0692 0.C208
0.1017 0.0225 0.0682 0.0192 0.0225 0.0973 0.0509
0.1518 0.0444 0.0368 0.0044 0.0384 0.0340 0.0589
0.1420 0.0514 0.0778 0.0082 0.0191 C.0947 0.0559
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'!ARIABLE-AT-A-TIME MVAR MODEL FOR U-4INE MODEL ORDER IS

ONE-STEP PREDICTION ERROR COVARIANCE MATFIX

2.5136 1.3577 0.7470 1.1605 0.7448 0.9897 0.b65
1.3577 3. 1844 0.8616 G.9717 0.5516 0.7826 0.6750
0.7471 0.8617 3.8494 0.6696 0.7303 0.58 0.9971
1.1606 0.9717 0.6695 2.2772 0.8118 0.9386 0.%559
C.744P 0.5516 0.7303 0.8118 2.3347 0.8537 0.7L19
0.497 0.7927 0. 5848 0.9385 0.8536 3.6600 0.595W'

. 056 0N ,7 c( 0.9971 0.5583 0.7419 C.508 3. ,74 7

-U.4,,jV " Z .-' -- 3,. 0 d95 -0. 1455 - 0. 07 14 -C. 114 1 - .I'"? -
-C,24C7 c.0'94 -0."'7 -,.0948 0.0116 -0.0299 -C.'2
-0.14b7 -G.272C -0.22 64 -3.0510 -0.079P, -, C474 -0.'9 -

-C,.2544 -0.2311 -0.0330 -7.3417 -0.0463 -0^.1305 -7.01 ,
-0.2349 -0. 1C71 -0.0387 -0. 1023 -0.3C61 -0. 16C9 -0. 2 5 A
-0.2357 -0.1238 -0.0290 -0.0479 -0.0932 -0.4301 -O.0129
-0.1582 -0.2172 -0.1432 -0.0874 -0.1719 -0.0470 -0. 2 4 -

CTEFFICIENI MATRIX A2

-0.0080 0.0581 0.018C ?.174 C .0125 0. 055 0. 0 190
"j344! -'.rl3C 0.02C5 0.0535 0.0471 0.0314 0.0047
0.0 075 0.010 -0.1045 -0.0023 0.0619 C.0177 0. OCq4
0.0,1 0. 1064 -0.0077 -J. 1098 0.0066 0.0564 -0.0049
0.0414 0.0627 -0.0246 0.0138 -0.0476 C.0152 -0. 0005

P q66 P0.0273 -P.(l " l (.0006 0.0458 -0. 0831 0.02419
.62 0.0296 -0.0358 -0.0126 -0.0116 0.0691 -0.0518

. hFF'CIENT MATRIX A3

.'7" -0.0020 0.0091 0. 0094 -0.0027 -0.0165 -0.0013
C.01291, -0.0370 0.0251 0.0404 0.0112 -0.0030 -0.0153
7.026Cs 0.0 130 -0.0481 0.0176 -0.0011 0.0569 -0. C250
0.0754 -0.0046 0.0231 -0.0246 0.0279 -0.0066 0.c11R
-2.C13 . 0.0307 0.0182 0.0715 -0.0062 -0.0065 -1.0021
0.066 -0.0107 -C.014C 0.0422 0.0350 -0.0608 0.0077

-,.C2. " 7 .0237 0.0172 0.0324 0.0597 0.0106 -0.031 1

FTICIENT MATRIX A4

-C.0268 -0.0154 0.0293 -0.0299 0.0155 0.0369 0.0237
-0.0157 -0.0432 0.0154 0.0103 -0.0023 0.0033 0.0075
0.0091 -0.0108 -0.04O0 0.0135 -0.0114 -C.0188 0.0135

-0.0254 C.0006 0.0221 -0.0672 0.0129 0.0175 -0.C060
-C.0187 0.0006 -0.0145 -0.0039 -C.0218 -0.0020 -0.0032
-0.0165 -0.0304 0.0464 -0.0020 -0.0038 -0.0007 0.0075

0.0082 0.0172 0.0341 -0.0046 -0.1643 -0.0032 -0.036q
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COEFFICIENT MATRIX A5

-0.C448 0.0321 -C.0225 0.0272 -0.0085 -0.0072 -).0111
-0.0182 0.0039 0.0045 0.0199 O.OC 19; 0.0004 -. C039
-0.0468 0.0395 0.C14 -0.0129 0.n4E1 0.0196 % .C215
0.0215 0.0375 -0.0011 -0.0141 0.0321 -0.0114 0.0225

-0.0147 0.0142 0.0173 0.0547 -0.0115 -0.0199 0.0188
0.0223 -0.0162 0.0144 0.0219 -0.0109 -C.0361 0.0C72
0.0039 0.0202 0.0155 0.0376 0.0638 -0.0046 -0.r"167

COEFFICIENT MATRIX A6

0.0055 -0.0258 0.0190 -0.0018 -0.0172 -C.C085 -r.0040
-0.0140 -0.0432 0.018F -0.0231 -0.0050 0.0017 0.C08C
0.0589 0.0006 -0.0281 -0.0539 -0.0589 -0.0130 0.0125
0.0228 -0.0315 0.0269 -0.0719 -0.0252 -0.0009 -C.0034
0.0381 0.0182 -0.0098 -0.0497 -0.0267 0.0174 -O.0C141
0.0392 0.0072 -0.0049 -3.0118 -§.0572 -C.0224 0.0030
0.0228 -0.011C -0.0C11 -0.0349 -C.0219 0.0214 -0.0224

COEFFICIENT MATRIX A7

-0.C298 0.0086 -0.0111 -0.0251 0.0295 -0.C080 -3.0244
-r.C162 -O.CO8 -0.0249 -0.0068 C.0548 -0.0171 -0.0347
-0.0489 0.0186 -0.0437 0.0261 0.0083 0.0150 -0. C074
-0.0105 0.0144 -0.0115 -0.0448 0.0281 0.0318 -0. r120
-0.0763 0.0255 -0.0211 0.0390 0.0057 -0.0071 0.0006
0.0007 -0.0319 -0.0396 0.0076 0.0229 -O.OOS1 -0.0119
-0.0496 0.0135 -0.0132 -0.0086 0.0305 -0.0133 -0.0208

COEFFICIENT MATRIX A8

0.0021 0.0168 -0.0094 -0.0379 -0.0445 -0.0104 -0. C001
0.0097 -0.0021 -0.0125 -0.0654 -0.0207 0.0045 -0.0000
0.0075 0.0203 -0.0400 -0.0348 -0.0200 -0.0050 -0.0134

-0.0246 -0.0022 -0.0419 -0.0412 -0.0549 -0.0281 -0.0163
0.0001 0.0049 -0.0082 -0.0233 -0.0463 -0.0154 -0.0171
0.0020 0.0119 -0.0180 -0.0249 -0.0120 -0.0521 0.C042
-0.0064 0.0272 -0.0120 -0.0476 -0.0252 0.0106 -0.0236

COEFFICIENT MATRIX A9

-0.0081 0.0059 -0.0103 0.0889 0.0334 0.0131 -0.2060
0.0318 -0.0134 -0.0012 0.0670 0.0375 -0.0105 -0.0036
0.0088 0.0152 0.0068 0.0729 0.0154 0.0097 0.C076
0.0161 0.0444 0.0052 0.0427 0.0366 0.0375 0.0094

-0.0015 0.0165 -0.0093 0.0781 0.0368 0.0154 0.0058
-0.0197 0.0174 -0.0024 0.0786 0.0335 -0.0125 0.g194
0.0198 0.0C32 0.C103 0.0458 0.0264 0.0465 -0.0012



VAPIa3LE-AT-A-TT4F MVAP MOD7L FOR V-WINr MODEL CPDFP IS q

ONF-STEP PRFDICTION ERROR COVARIANCE MATEIX

2.0104 0.8951 0.5895 *.7087 0.5176 0.5277 .
C.8955 3.0762 0.5891 0.4587 0.4061 0.3197 0.4331
0.5895 0.5891 2.9894 0.5051 0.4896 0.2117 0.5842
C.7087 0.4587 0.5059 2.0322 0.67C5 0.5178 1.5671
0.5176 0.4081 0.4896 0.6705 2.5116 0.6577 0.
0.5277 0.3197 0.2117 2.5178 0.6577 3.7165 r-,

. 52C 0. 433P C .5,42 '.5673 6C9 . 4 3..

C37FFTCIENT "A7!TX Al

-0.3342 -3.3204 -0.0893 -0.0854 -0.0345 -0.02 Q
-0.1306 -C.6586 -0.033 -. 0496 -0.0284 0.01? -1 . -"

-0.1214 -0.2677 -0.2575 -0.032 -0.0660 - 0.22 2 -
-0.2151 -0. 18q1 -0.034i -0.2721 -0.0707 -0.0367 -
-0. 164C -0. 1425 -0.0833 -2. 1899 -3.20 04 -. C
-0.1973 -0.1506 -0.077S -C.0992 -0.0671 -0.35U . ",
-3.1621 -0.1806 -0.1309 - .1272 -0.073, 2 -C. C - "

COEFFICIENT MATRIX A2

-C.0056 0.0325 0.C315 -C.034) 0.0065 -0.0037 0.? 52
C.03'6 -0.0160 0.C27P C.0284 -0.3067 -0.0059 3 . r'
0.0833 0.0584 -0.0877 -0.0342 -0.0100 0.07nQ 0. 24 1;0.(261 0.057h 0.0308 -0.0791 0.0007 0.0009 n.q

C.010 4 0.0682 0.0152 0.0018 -0.0284 C. 021 , ?.2 1 7
-0.0228,, 0.0656 0.0278 0.0783 0.0275 -0.3638 - . 2'

C.C L49 00357 0.153 .0127 -0.0096 C.421', -. 1,2>

C;EFFICINT MATRIX A3

-0.0017 0.0574 0.0284 -0.0081 0.0183 -0.0007 -0.316r
-C.0364 -0.0177 0.0256 0.0170 0.0293 0.09q -. 12P

,*0J)9 0.0302 -0.0459 0.0005 0.0336 0.0287 -0.008C
0.0301 0.0472 0.0306 -0.0212 0.0224 0.0127 0.0041
C.0225 0.0198 0.0162 -0. C085 -0.0404 0.0280 -0.0042

-0.0034 0.0453 C.0034 0.0218 -0.0167 -0.0177 0.0184
0,.0242 0.0256 -0.0039 -0.0132 0.0096 C.0174 -0.085

COEFFICIENT MATRTX A4

-0.0236 0.0071 0.0011 -0.0063 -0.0128 -0.0152 0.0044
-0.0106 -0.0060 0.0270 0.0038 -0.0036 0.0033 1.0138
0.0025 0.0100 -0.0420 -0.0109 -0.0117 0.0134 0.1915
-0.0129 0.0040 -0.0203 -0.0313 -0.0170 -0.0091 -C.0109
0.0101 -0.0116 0.0174 -0.0158 -0.0042 0.0010 -0.0003
-0.0053 -0.0448 0.0275 0.0373 -0.0094 -0.0129 0.0016
0.0114 0.0020 -0.0011 -0.0099 -0.0115 -0.0026 -0.r'056
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COEFFICIENT MATRIX A5

-0.0069 0.0035 0.0215 -0.0186 0.0115 0.0020 0.0239

0.0104 -0.0336 0.0057 -0.020 0.01295 .0036 1.01 1 

-0.0121 0.0314 -0.0472 0.0016 0.0090 0.3331 0.0097

0.0043 0.0057 0.0260 0.0030 0.0327 0.12?6 -0.0238

-0.0127 -0.0180 0.0186 -0.0089 -0.006U 0.0130 ---C163

-0.0280 -0.0064 0.0028 -0.0157 0.0343 0.0068 -0.0290
0.3000 -0.0069 0.0166 0.0123 0.0023 0.0241 -0.C066

COEFFICIENT MATRIX A6

-0.C037 -0.0127 0.0210 -0.0232 0.0106 -0.0079 0.0159

-C.0167 -0.0399 -0.0036 -0.0265 0.0224 0.0130 0.0067

0.0016 0.0063 -0.0415 -0.0043 0.0172 -0.0049 0.0214

0.0052 -0.0124 -0.0179 -0.03 45 0.0019 C.CC97 -0.0002
0.0076 0.0060 -C.0147 -0.0128 0.0013 -0. C070 0.0353
-0.0137 0.0120 0.038q -0.0069 0.0189 -C.0132 .049C
0.0098 -0.0169 -0.0187 -C.0255 0.0085 -0.0005 0,0129

COEFFICIENT NATBIX A7

-0.0290 -0.0063 -0.0177 -0.0269 0.0056 0.0090 -0.0148
-0.0026 -0.0264 -0.0151 -0.0311 0.0114 0.0030 -0.0080

-C.0196 -0.0179 -0.0245 -0.0351 -0.0C33 -0.01 7 -0.005R

-0.0245 0.0056 -0.0144 -0.0297 0.0023 -C.0C7q 0.0002

-0.0181 0.0070 -0.0062 -0.0181 -0.0282 -0.0104 -0.0052
-0.0016 -0.0036 -0.0085 -0.0606 0.0279 -0.0553 -0.0498
-0.0175 -0.0083 -C.0075 0.0028 -0.0080 -0.0090 -0.0117

COEFFICIENT MATPIX AS

-C.0033 0.0189 -0.0198 -0.0384 -0.0166 -C,0085 0.0097
-0.0050 -0.0459 0.0117 -0.0132 -0.0241 0.0067 0.0039
0.0428 0.0085 -0.0308 -0.0358 -0.0390 0.0027 -0.0067
-0.0046 0.0146 -0.0358 -0.0409 -0.0354 -0.0164 -0.0018
-0.0050 0.0167 -0.0262 -0.0015 -0.0292 0.0007 -0.0032
C.0681 0.0169 -0.0238 -0. 0095 0.0130 -0.0763 0.0063

0.0155 0.0087 -0.0180 -0.0325 -0.0276 -0.0139 -0.0061

COEFFICIENT MATRIX A9

0.0251 0.0302 0.0096 -0.0255 0.0128 -0.0001 0.0178

0.0359 0.0198 0.0058 -0.0274 0.0127 -0.0091 0.0255
0.0644 0.0422 -0.0255 0.0033 0.0041 -0.0008 0.0191

0.0357 0.0472 0.0195 0.0156 0.0039 -0.0078 0.0146

0.0250 0.0454 -0.0018 -0.0074 0.01C8 -0.0055 0.0110

0.0162 0.0448 0.0169 0.0025 -0.C187 -0.0113 0.0225

0.0367 0.0289 0.0098 0.0131 C.0121 0.0034 -0.0084
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-k- " .-- MV AP 3DEL FOP VISIBILITY M0rEL O

0"'r'-STEP 2PEDICTCON FFROR COVARIANCE MATFIX

i 51-7 .5 C .. C033 C.0052 0.0027 C.0616 0.c030
D.0050 0.0187 0.0035 0.023 0.0016 0.0011 0.)024
C.0033 0.0035 0.0024 C.004C 0.0012 0.006,
0.0052 0.0C23 C.0024 0.0097 0.0030 0.0018 D.3 1
,"'27 ".0011 '.0 C4 0.0030 0.0132 C.0018 .J -
U.0016 0.0011 0.0012 ,.0013 0.0018 0.0335 ;.7 r

S. ti .0C65 -. 0019 0.C034 C.0223 0c"'

C C 1 FIC1Y~ '-IAT FTX

_ .452,? .17. 095 C0.362 -0. 1164 -. 0430 -0.33Q -03"
-. 1795 . Th2" 2 .C.9c, 2.0199 -0.0325 C.08 -- C

-0.0 8 b 4 '. 1396 -C. 4251 -0.0256 -0. 0959 -0.0, 51
-0. ?i5"l -0. 10 18 - 0 16 2 - 3845 - C q0 -C. 3 16 -)9

-0.1393 -0.0449 -C. 0438 -3.0984 -0.5623 -D.0244 -0
-0.0476 0.0182 0. 010 -0. 1014 -0.1071 -0.40C5 0.0 1Q

-0, 09 7 -0.090 -0. 1223 -C.0033 -0. 08564 0.9,34 -'. -

COFFFICIFT MATTV A2

OU 00L95 ".02R8 2.0392 -0.0C98 -0.0328 1.4327
"'.o''6 2 3.02 0 .i 3 2.3197 -0.0234 4 C.,C4! C."2 "

. ,0, '0 42"'" -2.0107 .. 022 0C.0034 0.. 2 0. C3r
0.0321 0.0600 0.0097 2.0263 0.0087 -0.0043 2.2':S2

.05( 7 ),0 46 0.023F .0501 -C.0627 -0. 14 7 0.r2 7 r

,O2S2 C.008' -C;.0202 1.0501 -0.0176 -C.0022 22-1
0.C135 10.3'a2' ,.0,% . 0271 C.0029 -,. 0063 - ,

02 E F F ' -'T NT "ATRIX A3

-0w" 0.0073 -0.0060 -0.0135 -0.0026 0.0194 .0130
0,"10) -. Oq6 0.0053 -0.0205 0.0122 0.0264 -0 . 41
9.02t2 - .02-1 0.0101 -0.0591 0.0121 0. 0341 3.00 1

-1 0106 9.0,21 0.0004 -0.0300 -0.0083 0.0099 3.0084
0.0214 -0.0210 0.0083 0.0094 -0.0071 0.0129 0.0133

. 9 3. 012? 0.0119 -0. 0454 0.0368 0.0570 0.0025
")C -3. 0r3 -0.0027 -0.0288 0.0122 0 .0192 -0n27

C'-F- "(TFNT M T IX A4

1,0"51 -0, 089 C.0137 0,0169 0.0076 -0.0051 0.0027
0 .?172 -0.0263 0.0220 0.0037 0.0152 -0.0113 -0.0028
0.008 -0.0323 0.0117 -0.0054 -0.0321 -0.0010 -0.C043

.2 0.n024 -0.0051 -0.0054 0.0194 -0.0097 -0.0121

? 70"2 -0.9068 -0.0114 -0.0265 -0.0380 0.0024 0.0016

. 292 3.C0 44 0.0012 0.0321 0.0337 -0.0724 -0.0027
i.02tf -".3208 -0.0C92 -0.0316 -0.0064 -0.0022 0.0078

3 P



COEFFICIENT MATRIX A5

-0.0337 -0.0031 -0.0277 0.0133 -0.0033 C.076 3. 06 c
0.0 53 -0.0279 -0.0213 -0.0086 C.0277 (." 55 .. ,235
0.0012 0.0118 -0.0432 0.0103 0.0558 0.0066 
-0.0351 -0.02C3 O.010q 0.9189 -C.0266 0.0063 .032
-0.0022 -0.0056 -0.0013 O.0 1"73 0.0230 -0.0032 0.7

-0.-C C0'48 0).0099 0 221 -0.0 1 0 O. r 6 k f 1- e . 13 C r) C, - .

0.0090 -0.0130 0.0071 -0.0Ca3 0.0091 0.009 4 - .3'2

,OEFF1CTENT rATPX P 6

-0.0117 -0.0273 0.0225 0. 0063 -0.0016 0.0089 0.3 00
0.0290 --0.0482 0. lC 5 -0 0235 - .0037 0 .010 : ?4
0.0286 -0.C182, - . C06E -0.0061 -0.0426 .'Y19 - 5.58

C .081 -0.0036 -C 18C -0 .4 2 0 .306 0. 5 0.0123
0.0100 0.002 0.019(l -. C 358 - G.0473 C.0 20 -0.

-0.C 14 9 r. 065 -0.0286 m.0014 -. 022 0.0('7: -- r,3

0. 001 .00"" 0 .0070 09295 -0C 2.1 72 9- 2 4.76

COEFFICIENT kTP:X A7

-0.0218 -0.0231 -0.0113 -0.0653 -C.0305 -0.3116 -0. 24C
-0.0198 -0.0080 0.0058 0.0C36 -0.0407 -0.0102 -0. 031
-0.0153 -0.0199 -0.0544 -0.0113 -0.0084 -3.0122 0.0023
0.0171 -0.0176 0. 009!. -0.0130 -0.03CC -0.0154 -3.0104
-0.0002 -0.0206 -0.0127 -3.0025 0.0265 -0.0C52 r.^109
0.0366 -0.0426 -0.0256 3.0283 0.0289 -0.1139 -0.0325

-C.0337 -0.0459 -0.0297 0.0057 -0.0175 -0.0081 -0.0307

COEFFICIENT MATFIX AS

-0.0584 -0.0131 -0.0045 -0.0369 -0.0499 0.0047 -0.0477
-0.0444 -0.0376 -0.0311 -0.0279 -0.0441 0.0145 -0.0579
-0.0507 -0.0395 -0.0262 0.0249 -0.0505 0.0083 -0.0296
-0.0389 -0.0168 -0 .0310 -0. 0312 - .0621 0.0 15 -0.0570
-0.0242 -0.0227 -0.0038 -0.0559 -0.1144 -0.0008 -0.0818
0.0009 -0.0097 0.0242 0.0270 -0.0067 -0.6131 .0001

-0.0151 -0.0574 -0.0000 -0.0263 -0.0755 0. 0029 -0. 9 42

COEFFICIENT MATRIX AQ

0.0212 0.0478 0.0338 0.0337 0.0678 0.0052 0.0304
0.0401 0.0287 C.0357 0.0184 0.0578 -0.0030 0. 1t2
0.0335 0.0287 0. 0453 0.0284 0.0258 -0.0143 0. P2FC
0.0207 0.0422 0.0304 0.0252 0.0459 0.0120 0.0334
0.0034 0.0438 0.0259 0.0789 C.0535 0.0211 0.0407
0.0292 0.0375 0.0067 0.0244 0.0894 0.2C71 -0.0277
C.0 490 0.0420 0.0373 0.0160 0.0640 -0.0203 0.P)s49



.- E' P )FD!TIO1N FFFOR CDV¢A 9 IANCF MA-FIX

.C41' . 2 . 6 1.2'29 2 0..C46 C. 6 c .
0.C122 O.0~0 2.C06 0.0061 C.00'2. ". "00 , .. ,

.0o56 0.0069 0.0296 0.0037 0.0249 C.0O.C '". 1
'.0129 12 161 0.0037 0.0293 0.0c54 0, D.
* 6 ).0032 0.C04 9 . )054 0.0282 C.02,: ,

).0054 .0C25 0.0C,7 . 4 0CC&R ro..2 c 6
0,31 C0e39 C081 7) 04 6 0 . 0~ C.2> 7 ,

r f
T

" 4r-- 7 C" f,
-,;.i,62 - :~. ,% -2 :,,1 0C - . Q',3 -".r t,- C -[ : . . .

-. 4C 13I C.,i .C~

*.C656 -0.1360 -. 331 7 C 3 -, ,
2 ' 1123 - 055< - 3 -1 3 - C 4 4 ,

-.0983 -0. 4 -(.)C9 - C ,23 -(.32," -
-0.C 18 -0.0179 -0.0252 -. 0978 -0.0126 -2.4 ? '
-0 026 -0.075 -0.03,2 -C.0555 -..1027 -'.0 , - . "

C3F FC% ' : "AR AO

. r 37- K ,'9 -2.0373 0. 226 ).0225 2.0<2 .-. 26

C * E-' 9-o C7 2 9 0 247 C5 CIC
.C27C -U. 030 1 00 C0C95 -0. 049 .075 2.

).0378 0 0067 C .0553 C-. 26 -0.0279 -C. Cr 5
3.0205 -0. 0C13 -C. C82 791 0.0203 - C .-
J.03'9 2 . 017 6 -. 0.066 C 036 C.0297 C ?- - 2

* IEYF1C7TP"'47 rA',RIX A3

.0, i02 0C' 97 -0.0080 0.0106 0.0057 -0.0021 . 26
L0-L7 2.0124 -0.0201 C.004 -0.0036 0.0299 10.01oD9
,: ',0211 0.0028 0.0130 -0.0351 0.01 .-0,0018

". 0(2 , 0."'4 0.0207 -0.0089 -0.0123 0.020, <.2107
C. C'? 0 ' 0"67 0.0468 -0.0072 -0.0163 -00,7 . 0324

OrS "5p 0 r 42 -0.0436 -0.0016 -0.0097 -0.0041 0.0574
" . 111 011 0.014C 0.0146 -0.0234 C.0156 -0.0327

,JFW0!PE T ATRIX A4

0059 -0.0026 0.0260 -0. 0174 -0.0208 0.0025 -. 164
'7.2 '-' I C - .0258 -0.0109 -0.0316 -0.0211 0.0132 0.0291
.. 0139 -0.0148 -0.0535 0.0129 -0.0156 -0.0155 0.0081
02%6 C 6030 -0.0015 0.0178 -0.0187 -0.0251 -0.0173

8 0CL3 -0.0072 -0.0304 0.0067 -0.0520 -0.0470 0.0030
,.ZOiC -0.0035 0.0180 0.0145 -0.0289 -0.0633 -0.0521

4.0(34 -0. C007 -0.0677 0.0420 0.0068 -0.0626 -0.0012
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COEFFICIENT MATRIX A5

-0.0258 -0.0080 0.0243 0.0177 -0.0141 -0.0044 -0.0064
-0.0126 -0.0045 0.0573 O.C183 -D.C220 -C.1025 -0.9074
-0.0137 0.0251 0.0280 -0.0072 0.0035 0.0355 r.3028
-0.0357 0.0206 0.0396 0.0130 -0.0050 C.0 C3 -0.C01 1
-9.049 0.0111 0.0492 0.038b 0.0031 C.0138 0.0174
0.0205 0.0049 0.0358 -0.0074 -0.0U66 0.0373 0.0690
-'.CJ24 -0.0158 0.C125 0.0125 -0.0039 0. 0409 0.0033

COEFFICIENT MATRIX A6

-9.0409 0.0127 0.0017 -0.0068 0.0077 0.0123 -0.r184
0.0030 -0.0129 -0.0U76 -0.0063 0.0150 0.0391 -C.: .77
.C039 -0.0269 -C.0142 -. 3024 0.0288 0.0-1J . 001

-0.0099 -0.0225 C.0379 0.0147 -0.0094 -.0 . 2 -C.0067
0.C" 136 -0.0008 -C0.142 0. '0-93 -C. 0084 -0.002 -. 7175

-0.0106 0.0163 -0.025 P .C084 0.0209 0.O0064 -0. 186
0.0090 0.0067 0.0179 -0. 3467 0.0006 0.0108 -3.C056

COEFFICIENT MATRIX A7

0.3020 -0.0326 0.C421 -0.0247 0.0056 -0.0042 -0.0241
0.0178 -0.0102 0.0666 -0.0254 -0.0208 -0.0093 -0.0449

-C.OC77 0.0076 -0.0066 0.0142 -C.0167 -0.0272 -0.0271
-0.0174 -0.0298 0.0091 -0.C282 0.0092 0.0383 -0.2042
-0.0201 -0.0255 0.0191 0.0180 -0.0118 0.0257 0.0056
0.0001 -0.0313 -0.0179 -0.0033 -0.0051 -0.0243 -0.C134
0.0038 -0.0042 0.0111 0.0213 -0.0238 0.0001 -0.0382

COEFFICIENT MATRIX A8

-0.0108 -0.0034 -0.0158 -0.0328 -C.0495 C.0017 -0.0077
-0.0317 -0.0179 -0.0119 -0.0009 -0.0267 -0.0204 0.0092
0.0206 -0.0042 -0.0299 -0.0239 -0.0192 0.0135 -0.0072

-0.0102 0.0174 -0.0062 -0.0476 -0.0580 0.0152 -0.C335
0.0041 0.0093 -C.0100 -0.0173 -0.0202 -0.016g -0.0050
-0.0103 0.0031 -0.0097 0.0097 -0.0189 -0.0231 -0.0'72
-0.C038 0.0118 0.0025 -0.0163 -0.0096 0.0017 -0. 0467

COEFFICIENT MATRIX A9

0.0223 0.0107 0.0203 0.0129 0.0198 -0.0017 0.C307
0.0014 0.0044 0.0180 0.0049 -0.0149 0.0238 0.rl0o
0.0027 -0.0012 0.0073 -0.0008 0.0259 -0.0119 n.0018
0.0310 0.0085 0.0433 0.0056 0.0125 0.0076 0.0076
0.0044 0.0091 -0.0164 0.0101 -0.003C 0.006 3 0.009R
-0.0006 0.0232 0.016' 0.0095 0.0329 -C.0301 O.r 14)
-0.C056 -0.0096 0.0093 0.0188 0.0395 -0.0137 -0. ( 043
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0r') 41 .O004h0 O' ('13 -0. 0O -- ). 26 0.0283 . ? R3
.0135 - r'f 8 -0.050R 0. 1312 -0.0158 0.01f) O -0.0182

l ,", 21 0,- (' 14 -0.00!04 D. 01 Il -C 3 4,2 -0. 02! . r0 o9
'.'), 30 0; OC: 1 -0 .130 -0. 0332 -C.C 33 -0.0324 0.C037

1'.016q -0.03 31 0.0293 -0.Olb7 0.0C30 -0.0012 -0. 7298
.) :.2 -. :('? 75 -0.0807 0.04% 0.01 0 -0.0381 -0.0080
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COEFFICIENT MATRIX A5

-0.0102 -0.0198 0.0541 0.0081 -0.0216 0.0146 -0.C086
-0.0012 -0.0223 0.0189 0.0209 -0.0395 -0.0093 -0.C 06F
0.0302 0.0012 0.0351 -0.0275 -0.0175 0.0386 0.C7'

-0.0093 -0.0020 0.0459 0.0180 -0.c090 0.0001 -3.0111
-0.0200 -0.0002 0.0282 0.0263 -0.C171 0.01 I 3.0035
0.0223 0.0112 0.C356 -0.0451 -0.0540 0.0019 0.0564
-0.0058 -0.0026 0.0608 -0.0198 -0.C201 0.0009 0.CC070

COEFFICIENT MATRIX A6

-0.0078 -0.0202 0.0131 -,'.1088 0.0106 0.0134 -. k255
0.0422 -0.0241 -0.0163 -0.04,53 C.0242 0.'336 0.0126
-0.0139 -0.0126 -0.0146 0.015 0.0010 -0.0112 -3.^O044
-0.C u 1 -0.0253 0.0230 -0.00 46 u.0116 -0.001 , --0.0112
-0.0390 -0.0093 0. c 40 . "381 -0.0171 -0.0098 -C. 0 230
-0.0108 0.0C39 -0.0089 0.02C9 0.0221 0.0183 -1.0330
0.0068 -0.0110 0.0152 0.0131 0.0051 0.0268 -0. C 197

COEFFICIENT MATRIX A7

-0.0102 0.0080 0.0017 0.0015 0.0079 0.0046 -0.C257
0.0061 -0.0070 0.0233 -C.0032 -0.0163 0.0026 -0.C4-40
-0.0159 0.0047 -0.0115 0.0073 -0.0009 -0.0155 -0.0099
0.0001 -0.0076 0.0234 -0.0291 -0.0191 0.0392 -0.0025

-0.0159 -0.0001 0.0258 -0.0070 0.0092 0.0205 0.0219
-0.0099 -0.0085 0.0005 -0.0094 0.0016 -0.0398 0.0144
-0.0179 -0.0041 0.0082 -0.0250 -0.0023 0.0071 0.0029

COEFFICIENT MATRIX A8

-0.0385 -0.0406 0.0325 -0.0443 -0.0326 -0.0113 -0.C187
-0.0352 -0.0563 0.0052 -0.0354 -0.0022 -0.0284 0. 094
0.0233 0.0032 -0.0255 -0.0208 -0.0088 -0.0351 -0.0090

-0.0230 -0.0087 0.0009 -0.0382 -0.0332 0.0036 -0.0443
0.0123 -0.0088 -0.0022 -0.0015 -0.0134 -0.0240 -0.0092

-0.C240 0.0090 -0.0066 0.0121 0.0012 -0.0307 C.0107
0.0015 -0.0104 0.0316 -0.0524 -0.0154 0.0251 -0.0407

COEFFICIENT MATRIX A9

0.0324 0.0342 -0.0214 0.0381 -0.0010 -0.0090 0.0240
0.0149 0.0318 0.0003 0.0285 -0.0204 0.0126 0.0125

-0.0125 0.0038 0.0088 3.0194 0.0046 0.0366 0.0027
0.0226 0.0088 0.0297 0.0280 0.0118 -0.0046 0.0151
-0.0144 0.0276 -0.0103 0.0033 -0.0231 0.0097 -0.0032
0.0011 0.0291 -0.0030 0.0183 0.0166 -0.0314 -0.0127
-0.0106 0.0162 -0.0089 0.0411 0.0356 -0.0249 0.0061



.2T~U ~ 'i_?A S USED_ TO SFLZC ' HE PROPER OR DER MVAR 90DEL AN'
:iETE?M±IN E3 THE CD VAP:ANCE A ; C 'EFFICIENT MATRICF. FOL, THAT MOtFl,

C IVER 1I NP-DI MENSICNAL OBDERVI'TION VECTORS. THE MAXIIUM ORDER
!.JDEL CONSIDERED 1S LGOLD-1. A-;.TER THE FINAL AVAR MJDEL HAS
'%EN DETERM~INED, THE PREDICTION ERROR MATRICES FCE VARIO2.-STFP
4'liNECASTS AR - COMP'JTED BY '5U2'3UTINE EIRYVAR.

4 3;y! K ~0* A7 373 rX9 ',s77 3 (7,7 77 2.p,

41c IS T4-' N'~T'EP 017 V PT Fc 'I LE DICT7- T 7

2EIWAAL TO NP.
LGOLD=i C

LC;OLD IS ONF M~ORE T'HAN THE !',U,%J ORDER nVAP .MOZE77"
LG=LG0L D
II=8768

11 IS THE YU!EER OF OBSERVATIONF VECTORS TO WHICH ! VAP :~.

CTO B-7 FITTrED.

BEFORE SUBRO"TIN? RwJONS 1S CA'.L-ED FOR THEv FIRST T1I7 'T'_

oBER~r~NVB?'HSAPE! PL-ACED -N ARRA Y v DIME NSIOKEZ N T BY Il.
.ENC 71", Al3LTE3 E P IDED 7TE A? E D EN':T ED 3Y F IP 5T S -,7F SC P
THROUGH NC IN APPAY v~ 'fCLE W'BSCRIPTS XC+l THRCUSlH XP D FN T P-

7HE NP-NC VARIA3LEPS TO PF USED TO AID) IN THE PREDIC"I.ON. CF C,
NP MAY EQUAL NC.

CALL RH JON (, S, A 31, ,N", 'cLG, XM N, GAM, S D, 7 ,DD, A r', BPHa? tr
AF~P TE i~5 CAL O P.J~~.ARRAY S1 IS SCANNED T:) FIND T"E

r~i 4 .1I M~ VALUE OF '~A~ FPE PARAMETEP BY SUBROUTINF
'I N. 74 OYDER MOD JrL PR'oi *'1CH T H7 MIN IMUM OCCURS 15 !MN- 1.
CALL Ftt' I TN L~ ,L lNT
DE - 1 ~9~
LG LM_ 4

DUB~tTIN t ii!ONS 1S CALLED AGAIN TO DETERMINE THE COVARIANCE AND
V.,)EFFICIZNT WATRICES OF THE MVAR MODEL WITH THE MINIMUM VALUE
..f THE AKAIK? FPE PAPA~iETER. D-,)(1, 1)=99999. PREVENTS THE

U vrOMPUTATION OF TFF LAkG-SUNq MATRICES GAM.
CALL -RHJONS (X,S,A,Z11,II,NP,NCLG,XNIN,GAN,SB,EE,DDAB,B,BB,Q, ITD)T)

C A:BROJTIN' ERRVAR IS CALLED TO COMPUTE THE PREDICTION ERROR
L. 1.4TRICES. UPON ENTPY ARRAY S CONTAINS THE ONE-STEP PREDICTION

2 ~R9PCOVAPIANC3! r!ATRi': AND ARRAY A CONTAINS THE COEFFICIENT
%TRICES. THfE PRDCCC RPOF COVAPIANCE MATRICES ARE

L TJPNED IN ARRAY B8.
CALL EP?4VAP(A,3,S,BF,NP,LG)
STOP
END



SUBROUTINE RHJONS(X,SA,S1IIINPNCLG,XMN,GAMSBEE,DDvABB,BB.
,ITOT)

SJihOUTINE RHJONS COMPUTES THE COEFFICIENT MATRICES AND DETERMINES IF
C PROPER ORDER FOR A MULTIVARIATE AUTOREGRESSIVE (MVAR) MODEL. ON THE
C FIRST CALL TO RHJONS, NP TIME SERIES EACH OF LENGTH II ARE INPUT INTC
C ARRAY X. THE FIRST NC TIME SERIES ARE THOSE TO BE PREDICTED. LG-1 IS
C THE MAXIMUM ORDER MVAR PROCESS TO BE PITTED TO THE DATA. THE MEAN OF
C EACH TIME SERZES IS COMPUTED AND STORED IN XMN. THE AKAIKE FPE ARE
C COMPUTED AND STORED IN S. AFTER THE FIRST CALL. SI IS SEARCHED F3R
C ITS MINIMUM VALUE AND THE INDEX OF THAT VALUE. ON THE SECOND CALL TO
C RHJONS, DD(1,,l) IS SET TO 99999., AND LG IS SET TO THE INDEX OF rHE
C MINIMUM VALUE IN SI. AFTER THE SECOND CALL THEI COEFFICIENT MATEIZES
C FOR THE LG-1 ORDER MVAR PROCESS ARE A(NP,NP,2), A(NPNP,3), * .
C A(NPNP,LZ), THE ONE STEP PREDICTION COVARIANCE MAfTRIX IS S.

DIMENSION GAM(NPNP,LG),A(NPNP,LG) ,AB(NP,NPLG),B(NP,NP,LG)
DIMENSION BB(NP,NP,LG)
DIMENSION X(NPII),XMN(NP),S(NP,NP) ,SB(NPNP) ,EE(NP,NP) ,DD(NPNP)
DIMENSION Q(NCNC),SI(LG),ITOT(NP,NP)
DIMENSION WORK(1000)
XII=II

C iHEN DD(1, 1) EQUALS 99999. THE LAG-SUM MATRICES GAM NEED NOT
C BE COMPUTED. MISSING OR BAD DATA IN ARRAY X IS DENOTED
C BY THE VALUE OF -100.

IF(DD(1, 1) .EQ.99?99.) GO TO 123
DO 1900 I=1,NP
XMN (I) =0.
ITOT (I, 1) =0
DO 1900 J=lII
IF(X(IJ) .EQ.-100.) GO TO 1900
ITOT (I, 1)=ITOT (1,1) +I
XMN (I) =XMN (I) +X (IJ)

1900 CONTINUE
DO 1901 I=1,NP
XMN (A.) =XN (I) /ITOT (I, 1)
DO 1901 J=1,II
IF(X (IJ).EQ.-100.) GO TO 1901
X (I,J) =X (Iv J) -XMN (I)

1901 CONTINUE
DO 100 I=1,NP
DO 100 J=lNP
DO 100 K=ILG

100 GAM (7,J,K) =0.
DO 61 L=1,LG
DO 61 I=1,NP
DO 61 J=lNP
ITOT (I,J) =0
DO 62 K=L,II
K =K-L+ 1
IF(X(I,K3.EQ.-100..OR.X(JK1).EQ.-100.) GO TO 62
ITOT(I, J)ITOT(IJ) +I
GAM(I,JL)=GAM(I,JL).X(I,K)*X (J,K1)

62 CONTINUE
GAM (I,JL) =GAM (IJ,L) *(II-L+1)/ITOT (I,J)

61 CONTINUE
123 CONTINUE

DO 17 I=1,NP
DO 17 J=1,NP
A (I,J, 1) =0.
B(I,J,1) =0.
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AU( o , 1I -0.p
Be (IJ, 1) 0

17 CONTINUE
f'C 7 1-1,NP
B (I ,:,1) =I
A (1, 1, 1 1 I
BP (I, I, 1)=1.
AP (1, 1, 1) = 1.AB (I,I,I)=l.
DO 7 J=1,NP
S (I,J) =GAM(I,J,1)
SB (I,J) =S (I,J)

7 CONTINUE
IF( LG .LF. 1 ) GO TO 12(4
DO 8 ,: 72,L G
NL=L- 1,
I F ( ' . .. 1P) C;O T0 2 C
110 21 JI 1,4C

21 '9k1 :5 ,1,

CALL MATTNV VCDFT)

s (NI.) =-DET
20 CONTINUE

CALL MATINV(S,NP, DET)
IP(NC.NE.NP) GO TO 22
Si (NL) =DET

22 CONTINUE
CALL MATINV(SB,Nr :rET)
DC 9 I=1,11P
DO Q J= I ND
DD (I, ) =0.
EE (IJ) =0.
DO 9 K=1,NL
K IL-!( + 1

DO 9 =,NPEE (1,J) =EE f,', j),-9?{ fl, *' GAM (J,$l1, K 1)
DD(,=D (I,, -L'! (1," Y, -GAM jI 1,J, KI)
cl N,-,'J+ j rT F

DO 1~ 1 INP

Do 11 J=I,NP
A (T ,J,!.) =O.
A 5 ' 1.,", L! =0.

DO 1l ;"=I,NP
A (I,.,jT.) A (I,J,L) *DD (IK) SB (K,J)

11 A B(I .J, L) = AB ( I, J,L) * E E(IK) *S (K, J)
IF(L.FQ.2) GO TO 12
DO 13 K=2,NL
KN=L-K " 1
DO 13 1=1,NP
DO 13 J=1,NP
A (I,J,K) =B (I,J,K)
4B(T,JK)=BB(I,J,K)

DO 13 Kl:1,NP
A (I,J,K)=A (I,J,K) +A{I,K1,L)$BB(K1,J,KN)

13 AB(I,JK)=AB(IJK) AB(IK1,L)*B(KI,J,KN)
12 CONTINUE

DO 14 I=I,NP
DO 14 J=1,NP
DO 1'4 K=1,L
B(IJ,K) =A (IJ,K)

14 BB(IJ,KI=AB(IJ,K)
46



DO 15 1I=1 ,NP
DO 15 J=1,NP
S (IaJ) =GAM (,J, 1)
SB (1,J) =GAM1 (I.,1)
DO 15 K=2,L
DO 15 Kl11,NP
S(I,J)=S(I,J)+A(1,Kl,K)*GA1(J,K1,K)

15 SE (I,JJ =SB (1,3) AB(1r,K 1,K) *-,AM(K1,J,K)
8 CONTINUE

124 CONTINUE
DO 778 I=1.NC
DO 778 J=1,NC

CALL KATI NV (Q,NCDE-4)
Si (LG)=DET
WRITE(6,1800) S'
DO 200 I11,LGu
P1=II+(I1) *NP.1
P2=11- (I-I) *NP-1
P12= (P1/F2) **NC

200 S 1(1) =S 1 (1)*F12
SF=S1 (1 )
Do 201 I=1,LG

201 S 1(1) =S 1(1)/S F
WBITE(6,18C,0) St

1800 PORMAT(2X.'Sll.10E12.4)
Do 77 I1.LG
IF(Sl(I).LE.0.) Sl(I)1.-

77 Sl(I)=ALOG1O(S1(I))

DO 78 I=1.NP
DO 78 J=1,NP

78 S (I,J) S(I.J) /FN

END
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- - -'- N SEARCHES THE VALUES OF THE AKAIKE FPE PARA.FTF-
CONTAINED IN ARRAY Si. THE MINIMUM IS FOUND AND THE AERAY

....... ::. ,DTE bY LIMIN. THIS CORRESPONDS TO AN MVAR MO""

DIMEhSION S1 (LG)
SMIN= 1. E50
0O i: - I LG

I .. (I .GT. .3iN) GO TO

3MI-4 31 ()

5 Ai L. Si, f'?- N',I', E13. 5)

6 FORM '7A. xB3)
a ET *2.
END

SUBROUTINE MATIV (A,M,DET)
C TKI 5 KI3£ COMPUTES TH INVERSE MATRIX OF M BY M MATRI),

A AN" .E- K IM T INVERSE IN N. THE DETERMINANT CF A IS
iETURTLD IN DET.

D.O 1 S- I,

PVT -." j)

DO 2 :,'- ' '
D F .7- 1

-- .' ' "

T=A (K,J)
.~

'( AL{K) %'K,L-A (J,L) *T)
I CC NT'.j"D:

RETT, r ,
OND

110.



T~. P ~:A.: i USE-D TC MAKE 3, 6* , ANID 12' 1LC'-U:; MV FOFECASTS '
ANL2<. ?.iP~TETHE 801 CONFIDENCE :_NTF7,7ALSl 1O F-7 PLACED ABOUT

:A":,e~E H FOPECAST5 6-1. AC:UAL CBzS7:(VATI0Nl VAL::,
A~ Li F 'TC A SI TI1M1E.

1! '7 v :v :. ' XN (7),A(7 ,7,10) ,A -D (7 7) , Y)A:T (7,13) ')R:) (7),
1 :A- (7 ,4) ,XD AT(7,9) , V(7 7) V V(7, 7 , 1 5 (7 7, 1 C

F~.(7,44) , FLO (7,L4) , YTO! N (7) ,X>1N(7,~ *Kc N (7, 12)
'I, VAFN4 (28) ,ISTAN (21)

14:1Y, IZ4 H LN -PU,414 RG ,4112A U,4i!N SC 4 i E14 r A-,
14*i 1; .* "i G ,HW E bN,4 l lG EF 417C ... Z ,4. E : , 4 ?EN ,H

I A T IV Al, N /4 H 1S - , '4H CLD , 41!L A YE, 4L i T , 4:1CE17 , 4 !f IN 0
1 4 4 i 4 HL ,F!'P, 4 EFATI4;1 UE :1 ,4H

3 4-': ,W 41 V -W, 4 ND 4dh ,L 4 i
I',V A P, .D h Z V A TA 9L E N U MBER. P .1HEGi h O -1,H7F FI- SI CICUD LAYEI' ,
, =C~i:IN,; i-:GH:, 3=T'EIFEFATUE, 5=6~3LIY -. :ND, AND
7=V-n2& . Ni 13 71H. NUMBE?2 OF PTIFD-UC:i V.APIABLF . LG IS 2

ODRCF 'H MV AR MCDEL PLUS ONE. UiJJS, FCi A 9:E* CRDEP. MrCD:L
L 13 'mCJLJD _UAL 10.

RZAL(5,41-1) KVAP,NP,LG

L 'J 1 =L- -12

7 (; P 3 =: + 3
!:H, ""E:4VEC7Oi , ONE-STEP PREDICT:ON I>CRC.VATIANCE AT:X,

ni-. THE COEFF'7CIENT FA%1-ICES FORI id V-L ACE A-E, ZkAD :N
HU. L. H7 3AMPFLF ZAAN VECTOR, 7:: ;~. -.7~E ANr v

f LAG-SUM MATRICES ARE C C'D:D r.' zul 16 TO A?RAY
:1 LiiE CtIVAFIANCE MATRIX IS 7:rAL 7N:J AiRAY V AND 7*:S

CC F FITC 1N MAT IFICES A r'E REA D _71.T Al,.,A Y .AD AND allENl PLACED
.N A>Ay A. A (1,0, 1) WILL ALWAYS 32 :'7 DENTITY MAT1 :X W-1ULE
IcFFICIENT IAT-RICES A,A2, A3,. . 7JL -IL 2LCD 7\ A(,,

2!1- 0 C) x YN
CCLu?~AT(7F1 1.5)

DO ) L-=l,LG

5G 0(,3L=ARE(I;

-IF TiF VAPIAbLi IS TEMPERATURE, ':hl GRANDl MEANS, fiD TTFLY MEANS
AND MONIiiLY rIEANS WHICH WERE PrMOV::l LEFGRE TF~i PVAR MODEL
mAS DEEiEMUST BE READ IN IIEiE SC TAAT 7TY MAY FEE
ADDEDZ BACK TO THE FORECAST VALUES.

!F(KVA?.N!E.3) GO TO 110
iUIAD(5,1Cl) XTCMIN

% 1 FUR"SAT (7F8 .3)
113 C0 N I: N',i

CALL IEFliVAF (A,E,V,VV,NP,Lr3 )
7 i 3V7N TO BE U75ED TO MAKE ANZ V ""IFY 7HE FOFEtCA3STS
ARES ?EA'. IN HErE. 1't IS ASSUMED -.HAI TAH CONT IRVIUON OF

H iHUUiLY AND MONTHLY MEANS HAVE 7:ESN zrElAV-i EFGR THE
IFTE-RATJ.F DATA HAS BEEN REAL IN AND T4A- TRAN5Pcl1MEu
VI.;rILI7,Y AND CLOUD HEIGHT VAriABLE3 APU7 !0 BE tEAD IN.
ARTAY 1~'T3 LIMENSIONED NP EY LG.+3. Ti!- CRSERVAT:ON TO
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IH -HO!JP FOF KCA~ S :C 'NT A 1N -; 1N £L -1 :.T
* L, ~, hN<?.TONVALID A: TIF 2C FcOF?-CAST TE

* )N Y AT (1, 5), AND ':f! ' C:IF, A:0 . F A 22Z ,T !N
'AIN ENYAT( LG+ 3)

.)2A' tiCj 1,= ,N ) J~

I k 3, 1, 4

:7I G TO 21

1,L
3 ' D .3 7 A 1 L7

F I( :

A 7( , 7 F* YLA~ :I F-3T A (,L+ 1) )D7(

r(K V A. GC T( ) 12C
N~ '~N C F T H F 77 AS2 ZP U1 ' A E ~A IN

-.- LYUR -" TA- u:L ~NNL

*~~ F 1 FC 7 A'. IN AK Y A.: D =b. F .

1 1 J 1,4

3 1

D A J 7 F.Li AX c~ :: (C -''1) (1:)

I J 2*S

6K.T.2 AND. TCHK.NE. 5) GO TO 31:

* )X UL 2 000.

F ( LC .) FHiI (I J) =1.F- 13
1 ( 13 .L! . C. FLO (I J) = 1.- 13

. J) -::ULT *ALOG (FDA: (:d

~I IJ X Y U T*ALOC,(XLO.)

UF(1,J).LIt.G.) FLO (J)0.

1C LON: :N:N
KV 1= (KVAE- 1) 41
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K V '.;=?V 1 +3

:7-(f,, 930) (IVAPN (KV),KV=KV1,.V2)

.~i
910  F ..A: (/: L.,1A4/)

43 ' 1 )*D ' -, : , I

. f-,= gT 1+ 2

?: F,: ,9 01) (S N (IS) , IST= (i'1,L3)
9 DC 1 F6 "AI'(12i,3A 4/)

Do 1 1 1, ,
41 ..:. " ' = 5, F CST' 4E13. 5, AC':' ALI,4*:15 j

L 1,(:,J J1 , ((H: J),.J=1,k) S A- b ', . 3 C',4E 13. 5, ' 48 A , 1 3. L)

DC :4 1 "

.'J::,)'"- 2 E REP.VAR (A,B,V,VV,NP, ;)

DV( 1 I I,NP, 1 T= 1 N P

1 v ' 1,J, = V (I,J)
L',; m =Ls - 1

DC 10 LI,LGI

D"l 1 1,NP

D-,O ic' J=,NP

... .. ) G 0 7

L" :,J /)7-A (1,J,L I)

S CC:i :'

Kr K ,K 1, NP
8 A(I JL}=2 {$J,L) -E,.(I, VK, LK-I) -A(K~ , K

D C 10 L2,LG

52J 1L' J=1, NF
VV Ij L) =ViV (1,J, L-1)

DO 10 7K=1,NP
DO 16 LL=1, P

1" VV , ,L) VV (IJ , L) +B (I , K K , L- 1 * V V ,  ' 1) (J , L L,5L -

i, :: 7:51



FLOWC14ART 2F ANALYSIS PROCEDURE

in-itialization

efore any subroutine ceils: II is the number of NP-

dimensioqa7 observation vectors an MVAR model is to
be found for, the maxmu order model to be tried is
LG-I, the array X dimensioned NP by II contains the
observation vectors.

ist Call o4 Subroutine RHJONS

vV4R nde -)-I order zerc to order LG are fitted to
tre os Ne-; ew.inal o~servation vectors. The
values of c-v Akz,'e r' :arameter are stored n
array S,.

Call Subroutine FPEMIN

Array 'i is searched for the minimum value of the
FPE pardme"er. Array elenient LMIN denotes the

lnimu arm- '.IN- is the order of the MVAR model.

2nd Call of Subroutine RHJONS

An MVAR mode' of order LM:N-1 is fitted to the II
NP-dimensional observation vectors. The one-step
predictcr error- cova'-ance matrix is contained in
jrr j S ind tre coefficient matrices in array A.

Call Subroutine ERRVAR

Sredict'n- error covariance matrices for various
ster forecasts are computed and contained in array
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